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The limits to convective stability of a mixture in a horizontal porous bed have 
been derived for several types of boundary conditions subject to the occurrence 
of a homogeneous isothermal reaction. 

I. Consider a horizontal layer of porous medium filled with a chemically active binary 
liquid mixture, which consists of a heavy reagent and a lighter product. The latter is pro- 
duced throughout the volume of the layer without change in temperature at a rate proportion- 
al to the concentration of the reagent (flrst-order reaction). Reactions of this type are 
common in various electrochemical processes. The boundaries of the layer are isothermal 
planes, so the temperature is constant and the density is dependent only on the concentra- 
tion. The concentration variations during the reaction may result in unstable stratifica- 
tion and therefore in concentration-dependent convection. The appropriate conditions have 
been defined approximately [i] for the case where the upper boundary of the layer has a con- 
stant reagent concentration, while the latter becomes zero at the bottom. Here a more general 
formulation is employed. 

The porous bed has thickness d and the z axis is directed vertically upwards, while the 
xy plane is coincident with the lower boundary of the layer. It is assumed that the linear 
law p = po(l + 8C) applies for the density of the mixture as a function of reagent concentra- 
tion. 

The equations for convection are as follows if we assume Darcy's law and the usual 
Boussinesq approximations: 

1 V 
- -  V P  . v --3 g ~ C  e = O ,  
Po K 

ac  I 
- - + - -  v v C = D A C  - k c ,  

at m 

div v = O. 

( l .  l )  

The reagent concentration is constant at the upper houndary: 

C = C  ~~ at z = d .  

Boundary conditions of several types may occur at the lower boundary z - 0 [2]: 

a) reagent absent: 

C = O ;  

b) reagent flux of a given density: 

(1.2) 

(l. 3) 

OC 
- ~ ,  ( l .  4 )  

Oz 

where the case ~ > 0 corresponds to withdrawal of reagent and ~ < 0 corresponds to supply, 
while s = 0 represents a boundary impermeable to the reagent, in which case (1.4) coincides 
with the condition used in [i] ; and 

c) a heterogeneously catalyzed flrst-order reaction at z = 0 or mass transfer at a rate 
proportional to the concentration: 
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OC 
D -- oC. 

Oz (1.5) 

The normal c o m p o n e n t  of the infiltration rate is zero at both boundaries for all types 
of condition: 

v , = 0  at z = 0 ;  d. (1 .6 )  

We write t h e  equations of (1.1)-(1.6) in dimensionless form while retaining the previous 
symbols and using the quantities d, mD/d, Ct~ pogDm/K, and d=/D as the units of 
measurement for distance, velocity, concentration, pressure, and time, respectively; system 
(i.i) then becomes as follows for the dimensionless variables: 

V P + v + R C e = O ,  

0(7 
- ,-f- v V c = AC - -  tt'2C, 

Ot 

div v = 0. 

( 1 . 7 )  

The similarity parameters are R = gSKC(~ (the infiltration analog of the Rayleigh 
number) and ~ - dr (the Thiele modulus, which characterizes the extent of reaction). The 
dimensionless boundary conditions are as follows: 

at z =  1: v=----0, C=~t'; at z = 0 :  Oz=0;  

OC aC 
a) C----O, b) - - = a ,  c) --yC, 

az az 

(l.8) 

where y - od/D is the Sherwood number. 

2. The infiltration rate is zero at mechanical equilibrium and all the quantities are 
independent of time. A necessary condition for such equilibrium is [3] a vertical density 
gradient, which here is dependent on z on account of the reaction occurring in the volume. 
The steady-state distributions for Co (the concentration of the heavy component) may be de- 
termined by solving (1.7) with Vo - 0 and d/dt = 0, and these are described by the following 
expressions as appropriate to the types of boundary conditions: 

a) C o = ~I' sh ~ezlsh ~g, 

b) Co = (IFch Tz/ch q r) + ~ (sh ~ ( z - -  1)/~F ch ~F), 

c)  C o = ~I' (~I' ch Tz  + ~ sh ~I'z)/(~' ch ~I' + ~ s h ~ ) .  

(_2.1) 

(2.2) 
(2.3) 

Figure 1 shows the distributions of (2.1)-(2.3). 

If there is no reagent at the lower boundary, viz., condition (l.8a) applies, then the 
concentration pattern is described by (2.1); the density distribution is unstable for all 
nonzero u The stratification of the mixture increases with the Thiele modulus, and the 
zone of fall in the reagent concentration becomes narrower and tends to a thin boundary layer 
at the z = i plane for T large. 

The regions of positive u in the distribution of (2.2) denote outflowing reagent, and 
these have an upper bound of u+ = ~=/sh ~, which is the condition for complete absence of the 
outgoing component at z = 0. In the limiting case (u - a+), (2.2) reduces to (2.1). An in- 
crease in the rate of input of the reagent (an increase in the modulus for negative u) causes 
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Fig. i. Equilibrium distributions for the 
reagent concentration Co for T = 2 corres- 
ponding to the following distributions: 
a) (2.1); b) (2.2) for a = --3, 0, 0.5, u+; 
c) (2.3) for y = 2, i0. 
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the mixture at the lower boundary to become enriched in the heavy component, which may sup- 
press the unstable density stratification and therefore may eliminate the conditions neces- 
sary for convection to occur. Stable density dlstrlhutions occur in the presence of re- 
agents supply if ~ < a = --V=sh~, and for a = ~ we have dCo/dz = 0 at the upper boundary 

m 

of the layer. The equilibrium concentration distribution of (2.2) is the same as that of 
[I] for = = 0. 

Boundary condition (1.8c) results in a potentially unstable stationary distribution in 
(2.3) for which ~ ~ 0, which lles between the results of (2.1) and (2.2) for ~ = 0 and coin- 
cides with these for values of y of 0 and ~, respectively (infinitely slow and infinitely 
rapid heterogeneous reactions at z - 0, respectively). 

The equilibrium distributions of (2.2) and (2.3) approximate to the distribution of 
(2.1) for ~ § | 

3. The convective instability in these equilibrium distributions may be examined by 
reference to small normal perturbations in the rate and concentration that are proportional 
to exp [--It + i(a,x + a2y)]. 

We introduce the perturbations and eliminate the pressure in CI.7) to get a system of 
homogeneous ordinary linear differential equations for the amplitudes w(z) and ~(z) of the 
perturbations: 

(w "-- a2ov) = aZRB, 
(3.1) 

(a prime denotes differentiation with respect to z). 

The boundary conditions for w and N are given by (1.8) as 

a t  z= 1: ~ : = 0 ,  ~ 1 = 0 ;  at  z = O :  w = O ;  

a) r l=O,  b) I I '=0 ,  c) tl'=VII. 
(3.2) 

The perturbation decrements I are elgenvalues for (3.1)-(3.2) and are derived by speci- 
fying that a nontrlvlal solution to (3.1) exists. The eigenvalues may be derived numerically 
by the Runge--Kutta-nMerson method [4], which allows one to check the error of integration. 

Calculations show that perturbations with real I set the lower bound to instability and 
that the oscillatory situations that occur for the conditions of (l.8b) and (3.2b) are stable. 

The eigenvalues become I = 0 for certain values of the parameters in (3.1)-(3.2), and 
these define the stability limits corresponding to the neutral R(a, ~) curves. 

We now discuss the stability results. 
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Fig. 3. Neutral-stabillty curves: a) ~ -- 
--5 and ~ = 2.25, 3.0, 5.5; b) ~ = 3.25 and 

= 0, --5, --i0, --30. 

The broken line in Fig. 2 shows the minimum critical value for the Rayleigh number R, 
as a function of the Thiele modulus V for the absence of reagent at the lower boundary, viz., 
conditions (l.8a) and (3.2a); the zone of instability lies above the curve. The gradient in 
the equilibrium concentration is small if V is small, and the corresponding critical values 
of R, are large. The stratification increases with V and the heavy component is located 
mainly in the upper part of the layer. Consequently, the C@(z, T) relation on the one hand 
becomes more favorable to convection when V is large, and the critical R, fall, while on the 
other the motion occurs in a narrow region near the z = 1 boundary. These opposing factors 
result in the R,(T) curve approaching the asymptote R, = 19.9 for ~ § ~. 

Input or withdrawal of reagent at the lower boundary has a very marked effect on the 
convective stability of an equilibrium horizontal layer, in accordance with (1.85) and (3.25). 
Figure 2 shows the corresponding R,(~) curves for various values of ~ (solid lines). An in- 
crease in the rate of loss of the heavy component, i.e., variation in u over the range 0-a+, 
is accompanied by an increase in the density gradient and a reduction in the convective 
stability. The resulting family of critical characteristics R,(T) lles between the curves 

= u+ and u = 0 in Fig. 2 [note that the differences in the boundary conditions for ~ result 
in R,(T) curves that do not coincide although the steady-state concentration distributions 
are identical with and without loss of reagent at z = 0]. 

If the heavy reagent is supplied through the lower boundary (u < 0), the zone of un- 
stable stratification is reduced, and the stability of the equilibrium becomes greater. 
Figure 2 shows R,(T) curves for input at various rates (a = --i, --5, --30). The density dis- 
tributions are stable for u < u , so the R,(~) curves show asymptotic behavior for certain 

(the vertical dot-dash lines in Fig. 2). The following transcendental equation defines 
the asymptotes: 

~2sh~ ~-~ = 0. (3.3) 

All ~ less than the values given by (3.3) result in absolutely stable equilibrium. The con- 
vective stability of the system falls as the Thiele modulus increases, and R, approaches 
R, - 19.9 for any m, the latter result being the one derived from the boundary conditions of 
(l.8a) and (3.2a). 

If there is no flow of reagent at the lower boundary (~ = 0), then the boundary-value 
problem of (3.1)-(3.2b) is the same as that considered in [i]. An approximate solution was 
derived in [i] by Galerkin's method by means of certain basis functions that differ as be- 
tween large and small values of the Thiele modulus. The appreciable error in those results 
and the minimum on the R,(~) curve arise from the use of a small basis along with the assump- 
tion that the system is equivalent to a seml-lnflnite one for ~ comparatively small. The 
curve for e = 0 in Fig. 2 represents the revised R,(T) relation. 

Figure 3 shows examples of neutral-stabillty R(a) curves for various T for ~ = --5 (Fig. 
3a) and for various reagent input rates for T = 3.25 (Fig. 3b). 
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The latter shows that the critical values of the wave number a, become larger as ~ de- 
creases, which means that perturbations of smaller scale can cause instability, which itself 
is due to reduced thickness of the region of unstable stratification. 

Heterogeneous reaction or loss of reagent proportional to the concentration at the 
lower boundary, as represented by (1.8c) and (3.2c), will have relatively little effect on 
the convective stability. The family of R,(~) curves for values of the Sherwood number be- 
tween 0 and ~ lles in the range between the R,(~) curves corresponding to the boundary con- 
ditions of (l.8a), (3.2a) and (l.8b), (3.2b) for e = 0. 

NOTATION 

v, infiltration rate; C, Co, C (~ , current reagent concentration, equilibrium value, 
and dimensional value at upper boundary; p, convective correction to pressure; t, time; g, 
acceleration due to gravity; e, vertical unit vector; ~ = (i/0o)(~0/~C)T,p, coefficient re- 
lating density to concentration; K, permeability; m, porosity; ~, D, kina~tlc viscosity and 
diffusion constant; k, rate constant of homogeneous reaction; ~, rate constant for hetero- 
geneous reaction and mass transfer; w(z), n(z), amplitudes of normal velocity and concentra- 
tion perturbations; a~, a2, wave numbers for perturbations along x and y axes, a a  a + a 2  a = 
a 2 ;  ~, perturbation decrement. 

l. 
2. 

3. 

4. 
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THREE-DIMENSIONAL POTENTIALS FOR THE TELEGRAPHERS' EQUATION AND 

THEIR APPLICATION TO BOUNDARY-VALUE HEAT-CONDUCTION PROBLEMS 

I. A. Novlkov UDC 517.947.42:536.24.02 

Three-dimenslonal potentials for the telegraphers' equation are introduced and 
used to reduce boundary-value heat-conductlon problems to integrodlfferentlal 
equations of the second kind. 

In recent years the hyperbolic heat-conductlon equation has been used to solve various 
kinds of heat-conductlon and thermoelastlcity prohlems [i, 2]. Therefore, it has become 
necessary to create the mathem~tlcal apparatus for solving direct and inverse heat-c0nductlon 
problems based on the hyperbolic equation. With this in mind we generalize the potential 
method to the case of the telegraphers' equation. 

Three-Dimensional Potentials for the Telegraphers' Equation. We consider the homogene- 
ous telegraphers' equation with constant coefficients 

__ 1__ O~u (t, Mo) I Ou (t, Mo) , du (t,  Mo)+Au=O (1) 
c a Ot 2 a Ot ' 

and zero initial conditions 

u (o. ,~%) = a .  (o, Mo) ,a t  = o (2) 
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